JARL 第5回マイクロ波入門講座2013 9/23

最近のマイクロ波増幅技術

助教 石川亮 国立大学法人 電気通信大学

マイクロ波技術の構成要素	
受動デバイス	能動デバイス
アンテナ 伝送線路 結合・分配器 ジ	発振器 増幅器 スイッチ
フィルタ バラン	変調器 整流器

マイクロ波増幅器の各種技術

マイクロ波増幅回路構成

種々の高効率化方式の電流・電圧波形

F級およびE級の負荷インピーダンス

- F級動作 -

(電流→半波整流波)

- E級動作 -

(トランジスタ→理想スイッチ)

高調波リアクティブ終端による高効率化

$$v_{ds}(t) = V_0 + \sum_{n=1}^{\infty} \sqrt{2} V_n \sin(n\omega_0 + \phi_n)$$
$$i_d(t) = I_0 + \sum_{n=1}^{\infty} \sqrt{2} I_n \sin(n\omega_0 + \phi_n + \theta_n)$$

リアクティブ終端高調波処理回路

マイクロストリップ線路での構成例

高調波リアクティブ終端高効率増幅器の設計

試作した入出力回路および出力回路の特性

- 入力回路 -

入出力回路の電磁界解析結果を用いたシミュレーション

試作した入出力回路の損失の測定結果

入出力回路の実測結果を用いた効率シミュレーション

トランジスタ内電流電圧波形および高調波位相差

トランジスタ内帰還容量の負周期電流への影響

試作した増幅器の入出力・効率測定結果

- 試作増幅器 -

AIGaN/GaN HEMT

(ゲート幅: 96µm×10本)

最大PAE: 79.5%, 最大 η_D: 90.7%, 飽和出力: 33.3dBm

各種特性の周波数特性

自己発熱による増幅器ひずみ特性への影響

🔶 : これ以外のひずみ要因

熱メモリ効果

HBTチップ素子内の温度分布

HBTチップのパルス応答特性

UEC THE UNIVERSITY OF ELECTRO-COMMUNICATIONS

HBT内で生じる3次相互変調ひずみ(IMD3)

UEC THE UNIVERSITY OF ELECTRO-COMMUNICATIONS

HBT増幅器の熱メモリ効果のIMD3特性への影響 - IMD3(2波入力) vs 2波の周波数間隔 -

 $f_0 = 1.95 \,\text{GHz}$

UEC The University of <u>UEC Electro-Communications</u>

リアクタンス付加によるIMD3非対称性の補償 - シミュレーション -

7段RCはしご形回路によるリアクタンス値の実現

10 mm

RCはしご形回路を付加したInGaP/GaAs HBT増幅器

試作された増幅器の写真

入出力・効率特性

RCはしご形回路付加によるIMD3補償効果

調整によるIMD3補償効果の最適化

UEC The University of <u>UEC Electro-Communications</u>

ドハティ増幅器の基本構成

並列負荷型

 DA
 DA

 低RFレベル
 CA

 CA
 高RFレベル

 CAとPAが協調して動作

 CAの出力がメイン

 Pin

広ダイナミックレンジで 高効率動作が必要

ドハティ増幅器の基本動作

ドハティ増幅器の実際の回路構成例

並列負荷型

直列負荷型

IFC

試作した直列接続型ドハティ増幅器の回路構成

試作した1.9 GHz帯直列接続型ドハティ増幅器

ドハティ増幅器の入出力・効率特性測定結果

入出力特性

効率特性

CAゲート電圧調整による低ひずみ化

2波入力3次相互変調ひずみ

入出力・効率特性

非線形相互コンダクタンスのひずみ特性への影響

W-CDMA変調信号入力時の隣接チャンネル漏洩電力

対出力電力特性特性

スペクトラム

